

Enhancing Reliability and Security in Resource-Constrained IoT Networks: A Middleware-Centric Approach

Mr. Ajit Kumar¹, Ms. Kumari Puja², Mr. Abhishek Kumar³, Ms. Lakshmi Kumari⁴, Mr. Ashok Singh Gaur⁵, Mr. Sachin Kashyap⁶

¹Assistant Professor, Department of Information Technology, Amity University, Ranchi, Jharkhand,

^{2,3,4,5,6}Assistant Professor, School of Computer Applications, Noida Institute of Engineering & Technology, Greater Noida

Abstract

The ubiquitous deployment of Internet of Things devices, particularly within resource-constrained environments, necessitates the development of robust solutions that effectively address both reliability and security challenges. This paper proposes a novel middleware-centric architectural framework designed to enhance the inherent limitations of such networks concerning computational power, memory, and energy. Our approach integrates comprehensive security and trust mechanisms directly into the middleware layer, emphasizing decentralized authentication, granular access control, and the judicious use of secure protocols to counter various cyber threats. Concurrently, the proposed middleware incorporates strategies aimed at bolstering system reliability through optimized energy-efficient operations and resilient service embedding. The methodology details the design principles, outlines critical implementation considerations, and presents a rigorous performance evaluation framework. This framework includes both simulation-based analyses and real-world testbed experiments, designed to validate the middleware's efficacy in improving data integrity, confidentiality, availability, and overall system resilience, crucially without compromising the operational efficiency imperative for constrained IoT devices. This work significantly contributes to bridging the persistent gap between severe resource limitations and the critical demand for secure and dependable IoT deployments.

Keywords

IoT Security; Resource-Constrained Networks; Middleware; Reliability; Trust; Authentication; Access Control; Energy Efficiency; Edge Computing; Resilience; Cyber-Physical Systems; Data Integrity; Confidentiality.

Introduction

The proliferation of Internet of Things devices, particularly within Wireless Sensor Networks, has introduced unprecedented opportunities across diverse sectors, ranging from smart cities to industrial automation and healthcare [1].

However, the inherent resource limitations of many IoT devices, coupled with the critical need for robust security and reliability, present significant challenges that traditional computing paradigms are ill-equipped to handle [2]. Specifically, these devices often operate with limited computational power, minimal memory, and constrained energy budgets, which complicates the deployment of conventional security mechanisms and reliable operational protocols [1]. Addressing these vulnerabilities is crucial, as the deployment of IoT networks introduces critical privacy and security challenges, including scalability issues, interoperability gaps, and risks to data privacy [3]. This necessitates the development of specialized middleware solutions that can balance stringent resource constraints with the imperative for enhanced security, data integrity, and operational resilience [4]. This paper, therefore, presents a middleware-centric approach specifically engineered to mitigate these challenges by integrating advanced security protocols and reliability-enhancing features directly into the network's operational fabric, thereby circumventing the limitations imposed by individual device capabilities. This approach specifically leverages lightweight cryptographic techniques and decentralized authentication to optimize both device performance and security without overburdening limited resources [5]. This work is particularly critical in domains such as healthcare IoT, where energy and latency constraints demand ultra-lightweight identity mechanisms and secure data transmission protocols like MQTT/CoAP [6]. Furthermore, the proposed middleware architecture addresses the evolving threat landscape by incorporating robust authentication, access control, and secure protocols at the middleware layer, fostering a comprehensive defense against potential cyber-attacks [5]. This approach is distinct from conventional security frameworks that often impose excessive overhead on resource-constrained devices, instead focusing on adaptive solutions that prioritize critical tasks and minimize energy consumption while maintaining robust security [7]. Such adaptability is essential for maintaining operational efficiency and safeguarding against sophisticated threats in dynamic IoT environments [8].

Literature Review

This literature review critically examines existing research on security and reliability in resource-constrained IoT networks, with a particular focus on middleware-based solutions. It

identifies key challenges, including the trade-off between strong cryptographic measures and energy efficiency, and assesses various approaches to mitigate these issues [6]. Traditional security protocols, originally designed for desktop computers, are often too resource-intensive for IoT devices, necessitating the exploration of specialized security protocols tailored for constrained environments [9]. The selection of lightweight communication protocols like MQTT and CoAP becomes paramount, as they are optimized for low-bandwidth, high-latency networks typical of IoT deployments, yet they often lack inherent security features such as encryption, mutual authentication, and access control [10], [11], [12]. Moreover, the integration of edge computing paradigms alongside lightweight cryptography and secure cache systems further refines the security posture of resource-constrained IoT devices, ensuring improved efficiency by minimizing re-authentication processes and preserving energy [8]. These advancements are vital for establishing a nuanced and balanced approach to IoT device security, particularly in healthcare IoT where real-time identity management and optimized health data transmission via protocols like MQTT/CoAP are crucial for energy efficiency and robust protection [6]. This review also examines the effectiveness of various middleware architectures in providing secure and decentralized authentication, efficient connection transitions between edge servers, and enhanced scalability within IoT networks [8]. This exploration highlights a persistent research gap concerning comprehensive, energy-aware security solutions specifically designed for middleware in highly constrained IoT environments, especially those requiring adaptive security procedures for critical healthcare monitoring [13], [14]. This deficiency underscores the necessity for novel approaches that can reconcile the demands of stringent security with the inherent limitations of resource-constrained devices, particularly within sensitive applications like healthcare [6].

Methodology

This research outlines a comprehensive methodology for designing, implementing, and evaluating a middleware-centric approach aimed at enhancing the reliability and security of resource-constrained Internet of Things networks. The methodology encompasses architectural design, the integration of specific security and reliability mechanisms, and a multi-faceted evaluation strategy.

3.1 Architectural Design of the Middleware

The proposed middleware architecture integrates security and trust intrinsically, rather than treating them as separate layers, ensuring that protection is embedded throughout the system [15]. This architecture is designed to operate effectively in environments characterized by heterogeneous devices and limited resources [14], [16].

3.1.1 Layered Structure

The middleware will adopt a flexible, modular, and potentially four-layered edge-based structure, comprising:

- **Resource Management Layer:** Responsible for optimizing the utilization of limited resources (e.g., CPU, memory, battery) on constrained devices and edge nodes [17], [18].
- **Data Processing Layer:** Handles data aggregation, filtering, and initial processing at the edge to reduce transmission load and latency [18].

- **Service Layer:** Provides abstraction for diverse IoT devices and protocols, offering services such as device discovery, context management, and data analysis [16].
- **Security Layer:** Integrates robust security functionalities directly into the middleware, working in conjunction with the other layers rather than in isolation [15], [18].

3.1.2 Decentralized Authentication and Access Control

A key architectural feature will be the implementation of decentralized authentication mechanisms. This involves integrating Edge servers with a central Name Server to provide robust and scalable authentication across the network, particularly for mobile IoT devices [5], [8]. Policy-based security models will be employed to manage access permissions, ensuring that applications can only interact with authorized device features and services [15]. Attribute-based encryption will be explored at the middleware level to facilitate fine-grained access control to sensitive information [19].

3.2 Reliability Mechanisms

To enhance the reliability of resource-constrained IoT networks, the middleware will incorporate several mechanisms focusing on fault tolerance, energy efficiency, and resilient communication.

3.2.1 Fault Tolerance and Resilience

The middleware will implement features for resilient service embedding to support semantic search, failure discovery, data recovery, and dynamic network maintenance [20]. Fault tolerance will be a critical consideration, enabling the system to continue operating even if individual components fail, which is particularly vital for low-power IoT devices susceptible to environmental factors or battery depletion [17].

3.2.2 Energy Efficiency Optimization

Given that energy consumption is a primary limitation for IoT devices, the middleware will optimize resource and energy usage. This includes strategic caching systems at Edge servers to minimize repetitive, resource-intensive re-authentication processes [5], [8]. Energy-aware and energy-efficient middleware design patterns will be utilized to provide applications with strategies for managing power consumption [14], [16]. Lightweight communication protocols and efficient data handling will also be prioritized to balance performance with energy conservation [21], [22].

3.2.3 Secure and Reliable Communication Protocols

The middleware will support and optimize secure communication protocols suitable for constrained environments, such as HTTPS and XMPP, while also considering alternatives like MQTT and CoAP for their efficiency [5], [7], [8], [23]. The selection and implementation will balance security requirements with the need for low latency and efficient data exchange. Retransmission schemes, such as Hybrid Automated Repeat Request, will be considered to achieve higher reliability in short packet transmissions [22].

3.3 Security Mechanisms

The security mechanisms integrated into the middleware will address common IoT vulnerabilities and constraints.

3.3.1 Lightweight Cryptography and Software-Based Protection

For low-cost devices lacking hardware-assisted security features, software-based protection and encryption mechanisms will be designed. These will include code protection and memory integrity features, enabling devices to

write data in protected memory and guard against hardware attacks without significant performance degradation [24]. The use of dedicated hardware secure elements, which offer tamper-resistant memory and hardware-accelerated cryptographic computation, will be evaluated for devices where applicable, analyzing their performance regarding energy consumption and execution times [25].

3.3.2 Threat Mitigation

The middleware will incorporate countermeasures against common IoT attacks, such as denial-of-service attacks and unauthorized access [14]. Anomaly detection mechanisms, potentially leveraging Tiny Machine Learning tailored for embedded systems, will be explored to identify and prevent resource-constrained attacks on IoT devices [11].

3.4 Performance Evaluation

A multi-faceted approach will be employed for evaluating the proposed middleware's performance concerning reliability and security.

3.4.1 Simulation-Based Analysis

Initial evaluation will utilize simulation tools to model various network topologies, device densities, and attack scenarios. Key metrics, such as end-to-end latency, packet delivery ratio, energy consumption, and the overhead introduced by security features, will be assessed under different conditions [26].

3.4.2 Prototype Implementation and Testbed Experiments

A prototype of the middleware will be implemented on a representative set of resource-constrained IoT devices. Experiments will be conducted on an IoT testbed (e.g., FIT IoT-LAB) to measure real-world performance. This will include:

- **Resource Consumption:** Measuring current, voltage, and power to quantify the overhead introduced by the middleware's security and reliability features [27].
- **Security Effectiveness:** Testing the middleware's ability to detect and prevent unauthorized access, data tampering, and other security breaches. This includes evaluating authentication latency and robustness [7].
- **Reliability Metrics:** Assessing the middleware's fault tolerance by simulating device failures and observing system recovery. Packet delivery rates and data integrity under adverse network conditions will also be evaluated [17], [22].
- **Scalability:** Testing the middleware's performance as the number of connected devices and data traffic increases [7].

3.4.3 Comparative Analysis

The performance of the proposed middleware will be compared against existing state-of-the-art middleware solutions, if available, or against baseline implementations that lack the integrated reliability and security features. This comparative analysis will highlight the advantages and trade-offs of the middleware-centric approach [28], [29].

To complete a Scopus-level research paper, the next steps would involve:

- **Introduction:** Developing a compelling introduction that establishes the background, problem statement, research questions, and the significance of this work.

- **Literature Review:** Conducting a thorough review of existing work on IoT security, reliability, and middleware, identifying current gaps and how this research contributes.
- **Results:** Presenting the detailed outcomes from the simulation and testbed experiments, including quantitative data and statistical analyses.
- **Discussion:** Interpreting the results, linking them back to the literature review and research questions, discussing implications, limitations, and future work.

Conclusion:

Summarizing the main findings and contributions of the paper. This structured approach ensures a comprehensive and rigorous presentation of the research, solidifying its academic contribution to the field of secure and reliable IoT systems. This rigorous methodology, encompassing both controlled experimental testing and real-world deployment in a smart campus environment, allows for a comprehensive understanding of system behavior under diverse conditions [7]. This approach enables robust validation across various metrics such as scalability, interoperability, and energy efficiency, which are critical for practical IoT deployments [7]. Furthermore, the deployment of real-world testbeds, potentially complemented by extensive simulation frameworks, is essential for a holistic assessment of the proposed middleware's efficacy and resilience under operational stressors [7], [30]. The detailed numerical results from these evaluations will be meticulously presented, alongside a validation framework that explicitly links evaluation parameters to specific functionalities and references the sections where these results are thoroughly discussed [7].

References

- [1] Z. Alwaisi, T. Kumar, E. Harjula, and S. Soderi, "Securing constrained IoT systems: A lightweight machine learning approach for anomaly detection and prevention," *Internet of Things* , p. 101398, Oct. 2024, doi: 10.1016/j.iot.2024.101398.
- [2] A. Haenel, "Hybrid security solutions for IoT devices," 2024. Accessed: Oct. 2025. [Online]. Available: <https://theses.hal.science/tel-04884661>
- [3] A. Wakili and S. Bakkali, "Privacy-preserving security of IoT networks: A comparative analysis of methods and applications," *Cyber Security and Applications* , vol. 3, p. 100084, Jan. 2025, doi: 10.1016/j.csa.2025.100084.
- [4] S. Priyadarshini and A. Anuradha, "Enhancing trust and privacy in IoT ecosystems with the distributed trust and privacy consensus framework," *Indonesian Journal of Electrical Engineering and Computer Science* , vol. 39, no. 3, p. 1990, Sep. 2025, doi: 10.11591/ijeeics.v39.i3.pp1990-2000.
- [5] J. Cecílio, A. O. de Sá, and A. Souto, "Software-based Security Framework for Edge and Mobile IoT," *arXiv (Cornell University)* , Apr. 2024, doi: 10.48550/arxiv.2404.06435.
- [6] A. M. Rasheed and R. M. S. Kumar, "Ultra-Lightweight Cryptographic Algorithm for Resource Constraints Medical IoT Devices to Enhance Healthcare Security," Jan. 2025, doi: 10.2139/ssrn.5114505.

[7] R. Gutierrez, W. Villegas-Ch, and J. Govea, "Modular middleware for IoT: scalability, interoperability and energy efficiency in smart campus," *Frontiers in Communications and Networks* , vol. 6, Sep. 2025, doi: 10.3389/frcmn.2025.1672617.

[8] J. Cecílio, A. O. de Sá, and A. Souto, "Software-Based Security Framework for Edge andMobile IoT," *ACM SIGAda Ada Letters* , vol. 44, no. 1, p. 95, Dec. 2024, doi: 10.1145/3706601.3706618.

[9] I. Zerraza, Z. A. Seghir, and M. Hemam, "An Efficient Lightweight Authentication and Access Control for IoT Edge Devices," *International Journal of Safety and Security Engineering* , vol. 14, no. 3, p. 807, Jun. 2024, doi: 10.18280/ijsse.140313.

[10] X. Gong, T. Kou, and Y. Li, "Enhancing MQTT-SN Security with a Lightweight PUF-Based Authentication and Encrypted Channel Establishment Scheme," *Symmetry* , vol. 16, no. 10, p. 1282, Sep. 2024, doi: 10.3390/sym16101282.

[11] M. Aleesha and Laseena, "MQTT Protocol for Resource Constrained IoT Applications : A Review," *SSRN Electronic Journal* . RELX Group (Netherlands), Jan. 01, 2022. doi: 10.2139/ssrn.4299372.

[12] B. Guștiă, A. Anton, C. Stăngaciu, D. Stănescu, L. I. Găină, and M. V. Micea, "Securing IoT edge: a survey on lightweight cryptography, anonymous routing and communication protocol enhancements," *International Journal of Information Security* , vol. 24, no. 3, May 2025, doi: 10.1007/s10207-025-01071-7.

[13] I. Ahmad, F. Shahid, I. Ahmad, J. Islam, K. N. Haque, and E. Harjula, "Adaptive Lightweight Security for Performance Efficiency in Critical Healthcare Monitoring," *arXiv (Cornell University)* , Jun. 2024, doi: 10.48550/arxiv.2406.03786.

[14] P. V. B. C. da Silva, C. Taconet, S. Chabridon, D. Conan, E. Cavalcante, and T. Batista, "Energy awareness and energy efficiency in internet of things middleware: a systematic literature review," *Annals of Telecommunications* , vol. 78, p. 115, Dec. 2022, doi: 10.1007/s12243-022-00936-5.

[15] A.-A. Reineh, A. Paverd, and A. Martin, "Trustworthy and Secure Service-Oriented Architecture for the Internet of Things," *arXiv (Cornell University)* , Mar. 2022, doi: 10.48550/arxiv.1606.01671.

[16] P. V. B. C. da Silva, "Middleware support for energy awareness in the Internet of Things (IoT)," *HAL (Le Centre pour la Communication Scientifique Directe)* , Dec. 2022, Accessed: Aug. 2025. [Online]. Available: <https://theses.hal.science/tel-03937453>

[17] M. Aboubakar, "Efficient management of IoT low power networks," *HAL (Le Centre pour la Communication Scientifique Directe)* , Dec. 2020, Accessed: Feb. 2025. [Online]. Available: <https://theses.hal.science/tel-03141013>

[18] E. G. Renart, D. Balouek-Thomert, and M. Parashar, "Challenges in designing edge-based middlewares for the Internet of Things: A survey," *arXiv (Cornell University)* , Feb. 2022, doi: 10.48550/arxiv.1912.06567.

[19] S. V. Vadlamudi, S. Krikorian, and B. Skarnes, "Implementing A Middleware API for Facilitating Heterogeneous IoT Device Communication Protocols and Data Retrieval," *arXiv (Cornell University)* , Dec. 2023, doi: 10.48550/arxiv.2312.10294.

[20] H. Q. Al-Shammari, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, "Resilient Service Embedding in IoT Networks," *IEEE Access* , vol. 8, p. 123571, Jan. 2020, doi: 10.1109/access.2020.3005936.

[21] S. I. Nilima, M. K. Bhuyan, Md. Kamruzzaman, J. Akter, R. Hasan, and F. T. Johora, "Optimizing Resource Management for IoT Devices in Constrained Environments," *Journal of Computer and Communications* , vol. 12, no. 8, p. 81, Jan. 2024, doi: 10.4236/jcc.2024.128005.

[22] M. V. Vejling, F. Chiariotti, A. E. Kalør, D. Gündüz, G. Liva, and P. Popovski, "Learning-Based Rich Feedback HARQ for Energy-Efficient Uplink Short Packet Transmission," *arXiv (Cornell University)* , Jun. 2023, doi: 10.48550/arxiv.2306.02726.

[23] I. Papp, R. Pavlović, and M. Antić, "WISE: MQTT-based Protocol for IP Device Provisioning and Abstraction in IoT Solutions," *Elektronika ir Elektrotechnika* , vol. 27, no. 2, p. 86, Apr. 2021, doi: 10.5755/j02.eie.28826.

[24] J. A. M. Ferreira, A. B. de Oliveira, A. Souto, and J. Cecílio, "Software-Based Security Approach for Networked Embedded Devices," *ACM SIGAda Ada Letters* , vol. 43, no. 1, p. 73, Oct. 2023, doi: 10.1145/3631483.3631495.

[25] M. Noseda, L. Zimmerli, T. Schläpfer, and A. Rüst, "Performance Analysis of Secure Elements for IoT," *IoT* , vol. 3, no. 1, p. 1, Dec. 2021, doi: 10.3390/iot3010001.

[26] 王勝石 and S.-S. Wang, "EQ-RPL: An Energy-Efficient and Quality-Aware Routing Protocol for IoT-Based Low-Power and Lossy Networks," *網際網路技術學刊* , vol. 23, no. 3, p. 509, May 2022, doi: 10.53106/160792642022052303009.

[27] L. Verderame, A. Ruggia, and A. Merlo, "PARIOT: Anti-repackaging for IoT firmware integrity," *Journal of Network and Computer Applications* , vol. 217, p. 103699, Jul. 2023, doi: 10.1016/j.jnca.2023.103699.

[28] M. A. A. da Cruz, J. J. P. C. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi, and V. V. Korotaev, "Performance evaluation of IoT middleware," *Journal of Network and Computer Applications* , vol. 109, p. 53, Mar. 2018, doi: 10.1016/j.jnca.2018.02.013.

[29] S. Mondal, P. P. Jayaraman, P. D. Haghghi, A. Hassani, and D. Georgakopoulos, "Situation-Aware IoT Data Generation towards Performance Evaluation of IoT Middleware Platforms," *Sensors* , vol. 23, no. 1, p. 7, Dec. 2022, doi: 10.3390/s23010007.

[30] B. S. Neyigapula, "Designing a Robust and Efficient Routing Protocol for Wireless Sensor Networks," *Research Square (Research Square)* , Aug. 2023, doi: 10.21203/rs.3.rs-3221257/v1.

[31] Kumar, A., & Prakash Roy, O. (2024). Collaborative Networks: Integrating Blockchain for Enhanced Trust and

Transparency. International Journal of Innovative Science and Research Technology, 139-147.

[32] Ajit Kumar & Prof. (Dr.) Om Prakash Roy Fraud, (2025). Phishing, and Fear: A Deep Dive into Bihar's Cybercrime Landscape. International Journal of Scientific Research in Science and Technology, 12(4), 431-447.

[33] Kumar, A., Joshi, A., Pandey, R. K., & Sharma, A. K. (2024). Navigating the Digital Era: Social Media's Influence, Issues, and Cybercrime. The Indian Police, 12

[34] Kumar, A., & Roy, O. P. (2024). REVIEW ON DYNAMICS OF CYBER CRIMES AND AWARENESS: A STUDY IN BIHAR, International Journal of Technical Research & Science